Basis for regulated RNA cleavage by functional analysis of RNase L and Ire1p.

نویسندگان

  • B Dong
  • M Niwa
  • P Walter
  • R H Silverman
چکیده

RNase L and Ire1p are members of a superfamily of regulated endoribonucleases that play essential roles in mediating diverse types of cellular stress responses. 2'-5' oligoadenylates, produced in response to interferon treatment and viral double-stranded RNA, are necessary to activate RNase L. In contrast, unfolded proteins in the endoplasmic reticulum activate Ire1p, a transmembrane serine/threonine kinase and endoribonuclease. To probe their similarities and differences, molecular properties of wild-type and mutant forms of human RNase L and yeast Ire1p were compared. Surprisingly, RNase L and Ire1p showed mutually exclusive RNA substrate specificity and partially overlapping but not identical requirements for phylogenetically conserved amino acid residues in their nuclease domains. A functional model for RNase L was generated based on the comparative analysis with Ire1p that assigns novel roles for ankyrin repeats and kinase-like domains.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Alternative function of a protein kinase homology domain in 2', 5'-oligoadenylate dependent RNase L.

RNase L is the 2',5'-oligoadenylate (2-5A)-dependent endoribonuclease that functions in interferon action and apoptosis. One of the intriguing, albeit unexplained, features of RNase L is its significant homology to protein kinases. Despite the homology, however, no protein kinase activity was detected during activation and RNA cleavage reactions with human RNase L. Similarly, the kinase plus ri...

متن کامل

Mechanism of non-spliceosomal mRNA splicing in the unfolded protein response pathway.

The unfolded protein response is an intracellular signaling pathway that, in response to accumulation of misfolded proteins in the lumen of the endoplasmic reticulum (ER), upregulates transcription of ER resident chaperones. A key step in this pathway is the non-conventional, regulated splicing of the mRNA encoding the positive transcriptional regulator Hac1p. In the yeast Saccharomyces cerevis...

متن کامل

Pathologic effects of RNase-L dysregulation in immunity and proliferative control.

The endoribonuclease RNase-L is the terminal component of an RNA cleavage pathway that mediates antiviral, antiproliferative and immunomodulatory activities. Inactivation or dysregulation of RNase-L is associated with a compromised immune response and increased risk of cancer, accordingly its activity is tightly controlled and requires an allosteric activator, 2',5'-linked oligoadenylates, for ...

متن کامل

Catalytic activation of multimeric RNase E and RNase G by 5'-monophosphorylated RNA.

RNase E is an endonuclease that plays a central role in RNA processing and degradation in Escherichia coli. Like its E. coli homolog RNase G, RNase E shows a marked preference for cleaving RNAs that bear a monophosphate, rather than a triphosphate or hydroxyl, at the 5' end. To investigate the mechanism by which 5'-terminal phosphorylation can influence distant cleavage events, we have develope...

متن کامل

Biochemical and genomic analysis of substrate recognition by the double-stranded RNA binding domain of yeast RNase III.

Members of the RNase III family of double-stranded RNA (dsRNA) endonucleases are important enzymes of RNA metabolism in eukaryotic cells. Rnt1p is the only known member of the RNase III family of endonucleases in Saccharomyces cerevisiae. Previous studies have shown that Rnt1p cleaves dsRNA capped by a conserved AGNN tetraloop motif, which is a major determinant for Rnt1p binding and cleavage. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • RNA

دوره 7 3  شماره 

صفحات  -

تاریخ انتشار 2001